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“Dear Lord, let the equations be linear, the
noise be Gaussian, and the variables be

separable.” (Terrance J. Sejnowski)



Resumo

Mais de 6% da população mundial apresenta perda auditiva incapacitante. Para a comu-
nidade surda, a comunicação é um desafio diário que precisa ser superado, uma vez que as
línguas de sinais são consideravelmente menos prevalentes do que as línguas faladas. Nesse
cenário, a tradução de sistemas que efetivamente permitem a comunicação entre surdos e
ouvintes tem o potencial de melhorar o acesso a serviços básicos, como saúde e educação,
para milhões de pessoas em todo o mundo.

Progresso considerável tem sido feito em soluções que permitem a compreensão básica
de informações textuais por pessoas surdas. Até recentemente, no entanto, a natureza
visual complexa das linguagens de sinais e a escassez de conjuntos de dados disponíveis
para treinar soluções baseadas em aprendizado de máquina causaram um descompasso no
avanço da tecnologia tradução automática de sinais.

Neste contexto, a ascensão das técnicas de Aprendizado Profunda (Deep Learning) é
promissora para preencher a lacuna entre as soluções de reconhecimento de sinais e de
texto-para-sinal. Este estudo tem como objetivo apresentar os principais conceitos sobre
a teoria de Deep Learning e como ela pode ser aplicada em segmentação de imagens e
estimação de pose humana para contribuir no projeto de um sistema de reconhecimento
de linguagem de sinais robusto.

Palavras-chave: Deep Learning, Reconhecimento Automático de Sinais, Estimação de Pose,
Segmentação Semântica.



Abstract

Over 6% of the world’s population presents disabling hearing loss. For the deaf community,
communication is a daily challenge that has to be overcome, since sign languages are
considerably less prevalent than spoken languages. In this scenario, translating systems
that effectively enable communication between the deaf and the hearing to have potential
to increase access to basic services, such as healthcare and education, to millions of people
around the world.

Considerable progress has been made in solutions that allow for basic comprehension of
textual information by deaf people. Until recently, however, the complex visual nature
of sign languages and the paucity of datasets available to train machine learning-based
solutions caused a mismatch in the advancement of automatic sign translation technology.

In this context, the rise of Deep Learning techniques seems promising to bridge the gap
between sign recognition and text-to-sign solutions. This study aims to introduce the main
concepts regarding Deep Learning theory and how it can be applied to image segmentation
and human pose estimation to contribute to the design of a robust sign language recognition
system.

Keywords: Deep Learning, Sign Language Recognition, Human Pose Estimation, Semantic
Segmentation.
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Chapter 1

Introduction

According to the World Health Organization (WHO), 6.1% of the world’s pop-
ulation suffers from disabling hearing loss. While 6.1% may seem a small percentage, it
amounts to 466 million people around the world, of which 10 million are located in Brazil
[WHO, 2019]. Yet, the numbers are even more staggering once the ease of communication
is taken into account. For instance, a study by Kuenburg et al. [2016] highlights the
gaps in global health knowledge between the deaf and hearing communities, pointing to
communication as a major barrier for health care access and understanding of common
medical terminology.

Communication is a two-way, continuous process. If either party involved cannot
decode each other’s message, then the process is incomplete and therefore ineffective.
Deaf people’s primary form of communication is sign language: a composition of manual
signaling and non-manual cues, such as facial expression and body positioning. Sign
languages are generally unique within each culture, with their own grammar and lexicon
[Sandler and Lillo-Martin, 2006]. Moreover, it is also worth noting that most deaf children
and adults has poorer literacy than their hearing peers despite having the same level of
cognitive capacities [Mehravari et al., 2017].

In this context a question emerges, how can technology bridge the gap between
the deaf and hearing communities? The answer may lie in advancements of studies on
bi-directional sign language translation. A tool enabling the translation of spoken and
written messages to sign language can be helpful in establishing a one-way route of
communication. Similarly, a system capable of interpreting signs, translating them to
written and spoken languages, completes the cycle of communication. While applications
involving translations from text to signs present a greater level of development, as shown
by HandTalk [HandTalk, 2019] and Suíte VLibras [VLibras, 2019], automatic sign language
recognition (SLR) solutions still require improvement before achieving the capacity of
enabling natural conversations between deaf and hearing individuals [Cheok et al., 2019].

According to Er-Rady et al. [2017], there are three main challenges to developing
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a reliable sign language recognition system:

1. Visual complexity : sign languages are fully visual and involve multiple parameters
at the same time - hands, face and body - while the majority of the meaning of a
sign is carried through the hands. Although a slight change in one of the hands’
configurations can represent a completely different or an undefined sign, it is almost
impossible for a human signer to repeat the same sign with the exact same hand
locations and trajectories. Moreover, hand/hand and hand/face occlusions may
happen, hiding information that could be crucial to help distinguish among signs.

2. Scarcity of databases : because different recordings of a sign can present great variabil-
ity due to the nature of movement being executed, an extensive annotated database
is required to allow for the design and validation of a robust sign recognition system.
However, due to the cost and the workload involved in the creation of such struc-
tured data sets, there are still very few of them available. One solution explored by
researchers in the field is to create smaller data sets, including a limited number of
signs recorded at highly controlled environments. While this workaround enables the
exploration of new techniques for sign language recognition, little can be affirmed
concerning whether or not the proposed solutions can be generalized to the language
as a whole. Moreover, solutions designed in a particular language, e.g., American
Sign Language (ASL), may not be applicable to other languages, such as Brazilian
Sign Language (Libras).

3. Underdeveloped linguistics: as a result of the previous issue and in combination
with a lack of active researchers interested in the field, few sign languages have
been formally documented. Also, because a universal sign language does not exist,
researchers’ efforts generally are restricted to structuring their homeland’s language.

While the second and third issues require resources and knowledge that are beyond the
scope of this project, the problem of processing complex visual information can be tackled
through Computer Vision and Machine Learning approaches. The next section briefly
discusses the state of automatic sign language recognition systems, highlighting how the
two areas of knowledge can contribute to the design of robust recognition systems.
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1.1 Sign Language Recognition Systems

The general framework for sign language recognition is comprised of three funda-
mental parts. The first consists of an annotated database representative of the language.
As discussed before, there are few sign language data sets available, and most of them
contain only a small amount of signs from the researchers’ national sign language, recorded
under controlled conditions.

The second block consists of the definition of procedures for extracting significant
characteristics, or “features”, from a sign’s recording. These features generally revolve
around posture and trajectory of the hands, since most of a sign’s information is contained in
the manual parameters. The choice of feature extraction is decisive to the final performance
of the system. One common way of addressing the visual complexity issue in the feature
extraction stage is through the use of wearables sensors [Kawamoto et al., 2018], which
enable tracking of coordinates of selected points through video frames or cameras with
time-of-flight technology [Almeida et al., 2014, Escobedo-Cardenas and Camara-Chavez,
2015, Filho et al., 2017] which is capable of capturing depth along with RGB channels.

The last stage of a system for sign recognition consists of a Machine Learning
algorithm capable of learning to recognize a sign using the features extracted in the
previous stage. Many different techniques have been explored, varying from ensemble
methods, Hidden Markov Models (HMM) and Support Vector Machines (SVM) [Er-Rady
et al., 2017].

In spite of achieving high precision on classifying signs, approaches that utilize
external artifacts in the second stage are not applicable to everyday encounters, where,
ideally, the sign translation system would be used mostly. Accordingly, with the development
of more advanced computational techniques, such as Convolutional Neural Networks
(CNNs) Krizhevsky et al. [2012], external artifacts are being replaced by a combination of
Machine Learning and Computer Vision based approaches [Rawat and Wang, 2017, Zhang
et al., 2017]. For this purpose, this work explores the application of Deep Learning models to
perform video segmentation and feature extraction for a general sign language recognition
system. Deep Learning allows for the discovery of intricate structures underlying large
amounts of data and have dramatically advanced knowledge in image and video processing
[LeCun et al., 2015] thus posing as an interesting solution to eliminate dependency on
any kind of external equipment. The Venn diagram in Figure 1 shows the relation among
different levels of Artificial Intelligence (AI) technology, positioning Deep Learning as a
subset of Machine Learning.
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Deep Learning

Example:
 MLPs

Example:
 Shallow
autoencoders

Representation Learning

Example:
 Logistic 
regression

Example:
Knowledge 
bases

AI

Machine Leraning

Figure 1 – Venn diagram showing how Deep Learning relates to general Artificial Intelli-
gence. Deep Learning is a part of Machine Learning, which in turn is a subset,
and not the entirety, of AI technology.

Source: Goodfellow et al. [2016]

1.2 Objectives

The main objective of this senior thesis project is to propose a robust feature
extraction technique for sign language recognition systems, based on the segmentation
of regions of interest in sign language videos. This work documents the first half of the
project, with focus on:

• review of state-of-the-art neural networks architectures applied to video data;

• review of state-of-the-art techniques for semantic segmentation and pose estima-
tion, discussing how each technique can contribute to mitigate the effects of visual
complexity in SLR;

• investigation of effects of Machine Learning systems in society.

Previous studies regarding sign language recognition have exhaustively explored
the social relevancy of such systems [Almeida, 2014, Rezende, 2016, Almeida, 2017,
Mendes de Assis, 2018]. Hence, for the first half of the Senior Thesis Project, this work
explores the historical evolution of Deep Learning. Particular attention is given to social
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impacts resulting from recent improvements in Machine Learning techniques. Also, while
the end goal of this project is to propose a methodology for feature extraction in sign
language recognition systems, it is worth noting that the recognition of signs is beyond
the scope of this project.

1.3 Outline

The remainder of the work is organized as follows: Chapter 2 introduces the main
concepts related to Deep Learning, while Chapter 3 presents a brief survey of semantic
segmentation and pose estimation. Chapter 4 discusses the evolution of Deep Learning from
historical and social standpoints. Chapter 5 summarizes the next steps to be accomplished
in the second half of the thesis project. Chapter 6 presents the final observations. Lastly,
Annex A presents an example of a semantic segmentation system.
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Chapter 2

Deep Learning

Data representation can vastly impact the performance of a Machine Learning
algorithm [Najafabadi et al., 2015]. To illustrate, suppose there is a simple learning method
capable of separating different categories in a 2D space by using only a straight line. For
each of the representations of the dataset shown in Figure 2, such method would perform
significantly better if the input is in the form of polar coordinates.

Figure 2 – Example of different representations of a dataset

Source: Goodfellow et al. [2016]

It can be very difficult, however, to extract high-level, abstract features from raw
data. The passage below captures the main issues around data representation:

A major source of difficulty in many real-world artificial intelligence
applications is that many factors of variation influence every single piece
of data we are able to observe. The individual pixels in an image of a
red car might be very close to black at night. The shape of the car’s
silhouette depends on the viewing angle. Most applications require us to
disentangle the factors of variation and discard the ones that we do not
care about [Goodfellow et al., 2016].
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Traditional data engineering, at first glace, does not seem to be effective in
obtaining a representation of the problem when it is nearly as complicated as solving the
original problem. Deep Learning solves this central dilemma by introducing representations
that are expressed in terms of other simpler representations. In short, Deep Learning
enables the computer to build complex concepts out of simpler concepts [Goodfellow et al.,
2016].

This chapter is organized as follows: Section 2.1 introduces the main concepts
around Deep Learning methods. Section 2.2 expounds each of the three main layers of
Convolutional Neural Networks. Finally, the chapter ends in discussing the concept of
Transfer Learning, a technique that has been widely used to improve the performance of
training deep neural networks, especially in Computer Vision domain.

2.1 Deep Learning Architectures

Before diving into the different types of Deep Learning (DL) architectures and
their applications, it is important to define the common terminology underlying DL theory.
First, the concept of “learning” in DL actually comprises of three different processes
through which a model can be learned [Lison, 2012]. This is also applicable to Machine
Learning methods in general:

1. Supervised learning: in this modality, training data comes in observation-label pairs.
The end goal is to derive a model that generalizes well to new data, i.e., by being
capable of mapping new, unlabelled observations in the label space;

2. Unsupervised learning: in cases where only a collection of inputs is available, it is
possible instead to derive underlying patterns, i.e. describe possible correlations
between features, cluster observations in a few groups based on similar behavior and
detect outliers ;

3. Reinforcement learning: the basic components of these types of systems involve
perceptions, actions, and rewards. A agent interacts with a environment and is
rewarded depending on whether or not its actions are in accordance with the main
purpose of the system. This way, the goal of the agent is to learn the behavior that
maximizes its expected cumulative reward over time.

The second group of concepts to be briefly discussed in this thesis relate to
Artificial Neural Networks (ANN) theory. In ANN, a perceptron is a learning algorithm
that maps input1-output relations through a set of weights and a step function. While the
perceptron model has many limitations due to its linear nature, multilayer perceptrons

1In case of 2D data, for example, inputs are (x1i, x2i) pairs for each i-th observation
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(MLP) can handle many nonlinear problems. MLPs can combine multiple layers of artificial
neurons units. As opposed to the original perceptron, each layer can contain a different
activation function depending on its specific purpose in the network [Nielsen, 2015]. An
artificial neuron can be represented by the diagram of Figure 3.

Figure 3 – Artificial neuron in a multilayer percetron neural network

Source: Patterson and Gibson [2017]

The last concept corresponds to the difference between generative and discrimi-
native models [Patterson and Gibson, 2017]. Generative models try to understand how
the data was created by learning the joint probability distribution p(x, y). Discriminative
models, on the other hand, focus on the conditional probability distribution p(y|x), i.e.,
given an input x, this class of models tries to discriminate to which output y the input
can be mapped to.

Deep Learning architectures can be categorized with respect to the basic method
they are derived from, the type of learning employed, whether the models employed are
generative or discriminative and with regard to the topology of the network employed [Guo,
2017]. Figure 4 summarizes the main methods, presented along with a non-exhaustive list
of examples of architectures.

Figure 4 – General taxonomy for Deep Learning architectures

Source: Guo et al. [2018]
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To illustrate some of the methods shown in Figure 4, the remainder of this section
briefly touches Autoencoder (AE) and Recurrent Neural Networks (RNN). Section 2.2
introduces in greater detail Convolutional Neural Networks, a class of DL architectures
widely applied to Computer Vision problems.

Autoencoder

Autoencoders (AE) are generally used to reduce the dimensionality of a dataset
[Hinton and Salakhutdinov, 2006]. The structure of AE networks is, at a first glance, highly
similar to that of an MLP, as Figure 5 shows. One of the key differences in relation to
MLPs, however, is that AE architectures present the same number of units in the input
and output layers. The hidden layers in the AE of Figure 5 also exemplifies the intuition
behind its compression capabilities, since the input must pass through a bottleneck before
being expanded back to the output layer.

Figure 5 – Example of a compression autoencoder

Source: Patterson and Gibson [2017]

Another aspect that separates AE from MLP models is that the first perform
unsupervised learning of unlabeled data. For instance, a denoising AE that is trained
over multiple variations of “corrupted” data, e.g., in which features are removed randomly,
can learn to identify the “uncorrupted” output. By learning to understand the difference
between the input and output representations instead of focusing on the output itself, AEs
serve as boosters in anomaly detection systems [Patterson and Gibson, 2017].

Recurrent Neural Networks

Recurrent Neural Networks (RNN) were developed to handle sequential data. Juer-
gen Schmidhuber, a lead researcher in Deep Learning, provides an interesting explanation
on RNNs:
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[Recurrent Neural Networks] allow for both parallel and sequential com-
putation, and in principle can compute anything a traditional computer
can compute. Unlike traditional computers, however, Recurrent Neural
Networks are similar to the human brain, which is a large feedback
network of connected neurons that somehow can learn to translate a
lifelong sensory input stream into a sequence of useful motor outputs.
The brain is a remarkable role model as it can solve many problems
current machines cannot yet solve. [Patterson and Gibson, 2017]

One of the most important characteristics of this class of methods is that it allows
for dynamic changes of its elements. The behaviour of hidden layers, in this case, might be
determined not only by the activations in the previous layers, but also by activations at
earlier times [Nielsen, 2015]. This effect makes RNNs particularly interesting candidates to
problems where data presents some form of time-dependency, such as in time series [Che
et al., 2018] and speech processing [Ahmed et al., 2018]. Another promising application
of RNNs is in video understanding tasks, such as in sign and gesture recognition [Wang
et al., 2018b], since hybrid CNN-RNN architectures allow for capturing of both visual and
temporal information. The next section explores in depth the main components of CNNs.

2.2 Convolutional Neural Networks

The main advantage that Convolutional Neural Networks offer in relation to the
other concepts discussed in this chapter is that the architecture takes advantage of spatial
relationships present in the data [Guo et al., 2018]. The idealization of CNNs was motivated
by minimal data preprocessing requirements and rely on the ideas of local receptive fields,
shared weights and pooling [Nielsen, 2015]. Each of these ideas are combined to form the
general structure of CNNs, seen on Figure 6.

Figure 6 – General architecture of a Convolutional Neural Network

Source: [Amidi and Amidi, 2018]

The layers shown in Figure 6 will be discussed in more detail below. These layers
be tweaked, combined, and interleaved, enabling the creation of a multitude of different
frameworks. Figure 7 compares a few of the most popular CNN architectures found in
literature.
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Figure 7 – Comparison of accuracy and computational cost across multiple CNN archi-
tectures trained on ImageNet data. Top-1 one-crop accuracy versus amount of
operations required for a single forward pass. The size of the blobs is propor-
tional to the number of network parameters; a legend is reported in the bottom
right corner, spanning from 5× 106 to 155× 106 parameters.

Source: Canziani et al. [2016]

Besides using MLP-like networks in the last layer and being comprised of “units”
that function in a similar way as artificial neurons, the intuition of a CNN as a Neural
Network can also be associated to its two-stage, supervised learning process. In the first
stage, the forward pass, each layer feeds the following with activations, found by associating
a set of weighted inputs and bias through an activation function. In the second stage,
the backward pass, a loss cost is calculated over the predicted and real responses. The
gradient of each parameter of the network with respect to the loss cost is then propagated
backwards through the hidden layers, updating the weights that connect a layer to the
next one. This method of updating the weights is know as backpropagation [Guo, 2017].

2.2.1 Convolutional Layer

In the first hidden layer, a local receptive field corresponds to the sub-region of the
input image to which a hidden unit2 is connected to. Likewise, each unit of the following
layers is only connected to a limited number of units in the previous layer. Local receptive
fields forming n× n patches move over a layer with fixed step sizes, referred to as stride.
A stride of length 1 was used in the example shown in Figure 8.

2A “unit” in CNNs is analogous to a “neuron” in MLPs
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(a) (b)

Figure 8 – Examples of local receptive fields in a CNN. There is one hidden unit in the
first hidden layer for each local receptive field. A unitary stride was used to
move the local receptive field seen in 8a, forming a new input region to the
next unit, as seen in 8b.

Source: Nielsen [2015]

In Figure 8, like in the MLP model, each connection from the input layer to a unit
in the next layer has a weight. Moreover, each unit has an activation function (σ), that
operates over the weighted activations of the previous layer according to Equation 2.1:

σ

(
b+

n∑
l=0

n∑
m=0

wl,maj+l,k+m

)
(2.1)

in which b is the bias, n is the size of local receptive field, a is the activation of the unit in
the previous layer and w is the weight that connects the previous layer’s unit to the next
layer’s one. The activation function can be linear or non-linear, depending on the purpose
of the layer. The name convolutional comes from the fact that the operation described in
Eq. 2.1 is also known as convolution [Nielsen, 2015].

Contrary to the MLP model each of the 24× 24 hidden units shown in Figure 8
share the same weights and same bias, forming a feature map. Consequently, all units in
the first hidden layer of Figure 8 detect the same kind of input pattern. This is beneficial
since it greatly reduces the number of parameters involved in a CNN.

As a general case, a same hidden layer is constituted of multiple feature maps, also
called filters or kernels. While filters are spatially smaller than the input image, they are
more in-depth. Therefore, if an image is composed of three channels, e.g., RGB channels,
the filter’s height and width will be spatially smaller, but the depth extends up to all three
channels.

Examples of outputs of convolutional layers is shown in Figure 9. Each image
corresponds to a feature map. Although it is not intuitive to describe what each feature
detector is learning, the existence of a spatial structure among the feature maps is clear.
At the end of all convolution layers, it is expected that the CNN will have learned features
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that allow a clear separation of all classes that the network was trained to recognize [LeCun
et al., 2015].

Figure 9 – Feature maps learned in the convolutional stage

Source: [Dertat, 2017]

2.2.2 Pooling Layer

Pooling layers are generally inserted in-between convolutional layers, simplifying
the information outputted from a convolutional stage. By decreasing the dimensionality
of the representation and, thus, reducing the number of parameters in the network,
pooling layers control overfitting and reduce the computational cost throughout the
network. Furthermore, pooling also permits the extraction of dominant features, which
are rotational and positional invariant [Nielsen, 2015].

The most common form of pooling operation is the max-pooling, which consists of
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n× n filters3 applied to the activation of the hidden neurons’ output from the previous
layer. The pooling unit simply performs a maximum operation in the input region, as
illustrated by Figure 10:

(a) (b)

Figure 10 – Example of a max-pooling operation. 10a Max-pooling operation applied to a
24× 24 output from a convolutional layer, resulting in a 12× 12 activation
map after pooling is carried. 10b Reduction of three 24× 24 activation maps
to 12× 12 after pooling.

Source: Nielsen [2015]

Apart from max-pooling, L24 and average pooling are also widely used. In L2
pooling, the procedure follows as described before, but instead of applying a maximum
operation, the square root of the sum of squares of each activation in the filter region
is mapped to the next layer. The same intuition applies to average pooling, where the
average of the activations in the filtered region is carried to the next layer of the network.
In short, although these three types of pooling are most generally applied, there are many
choices of operations that can be adapted to boost the network’s performance [Guo, 2017].

2.2.3 Classification Layer

The network pipeline ends in one or more fully-connected (FC) layers that perform
classification based on the features extracted by the previous layers. The term “fully-
connected” comes from the fact that every node of a layer is connected to every node of
the next layer. Typically, the classification layer correspond to a set of traditional MLPs,
ending with a softmax activation function that outputs the probabilities predicted for each
class [Nielsen, 2015].

Since most of the CNN’s parameters concentrate in the FC layers, training can
be computationally expensive. Recently, however, a wide variety of visual recognition
tasks have incorporated transfer learning approaches, preserving or fine-tuning parameters
pre-trained on the ImageNet dataset [Russakovsky et al., 2015] and adapting the final

3n = 2 is most generally used
4L2 pooling uses a L2-norm operator
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FC layers to the problem in hand, as a solution to boost training efficiency [Guo, 2017].
Figure 11 shows a schematic example of transfer learning using pre-trained weights from
convolutional layers.

Figure 11 – Example of transfer learning for analysis of retinal OCT images

Source: Zia et al. [2018]

2.3 Transfer Learning

Transfer learning (TL) is used to improve a learner in one domain by transferring
information from a related domain. To illustrate, a person with an extensive music
background will be able to learn an instrument in a more efficient manner by transferring
previously learned musical knowledge to the task of learning to play a new instrument
[Weiss et al., 2016]. The same way a person is able to take information from a previously
learned task and use it to complement learning of a related task, transfer learning can be
applied to Deep Learning, leveraging the specialization obtained on pre-trained models to
reduce the computational cost of fully training deep networks and the need for a large
amounts of labeled data.
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Research on transfer learning aims to build learning machines that can generalize
across different domains following different probability distributions [Long et al., 2017].
The main challenges of transfer learning revolve around how to reduce the shifts in data
distributions across domains. Meanwhile, multiple studies in a wide variety of applications
have reported benefits from adopting TL [Huh et al., 2016].

In Computer Vision problems, deriving a general-purpose CNN to perform clas-
sification on ImageNet data and then fine-tuning for a new target task has become a
common practice, even in fields that are seemingly unrelated to the domain in which the
network was pre-trained [Huh et al., 2016]. Lee et al. [2019], for instance, reported an
increase in both accuracy and training speed while applying TL from ImageNet to the
development of a fully connected network for a vision-based steel slab identification system.
Likewise, Hu et al. [2018] and Yaguchi and Nixon [2018] demonstrated promising results
in incorporating transfer learning to perform instance segmentation5 in a wide variety
of scenes. In effect, transfer learning can be applied in the process of training a CNN to
perform human segmentation in sign language videos. Since few annotated sign language
datasets are available, a transfer learning based approach fills this gap by leveraging large,
public datasets, such as ImageNet or COCO [Lin et al., 2014].

5Instance segmentation is the task of predicting a mask for each object in an image
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Chapter 3

Deep Learning Applications

This chapter presents two applications of Deep Learning which highlight some of
the advancements achieved in the realm of Computer Vision. The first concerns the ability
to semantically understand an unknown image, recognizing the different objects present in
the scenario. The second application, human pose estimation, is largely applicable to sign
language recognition systems, which is generally used to segment the different body parts
such as the hands and face. The two applications are complementary, enabling both the
identification of humans in images and the localization of specific regions of interest for
sign and action recognition tasks.

3.1 Semantic Segmentation

Semantic segmentation sparks interest in several areas, including human-computer
interaction [Zuo, 2016], medicine [Desai et al., 2019] and gesture recognition [Dadashzadeh
et al., 2018]. Accordingly, literature on the topic is extensive. Semantic segmentation is
one of the high-level tasks that allows the development of applications with high inference
capacity of knowledge about the content of an image [Guo et al., 2018].

The aim of segmentation algorithms is to assign every pixel in the image to
semantically similar groups. Therefore, semantic segmentation requires correct and precise
detection of all objects in an image, which, in turn, is a very challenging task in Computer
Vision. An example of semantically partitioning an image into cohesive sub-regions can be
seen in Figure 12. Human segmentation, as seen in Figure 12, is particularly interesting
for SLR systems as it can help reduce the visual complexity of a scene by cropping the
region where the signaler appears.

Studies in the field date back to 1970’s, when methods were mostly comprised of
traditional Computer Vision techniques, such as edge detection and thresholding [Fu and
Mui, 1981]. Recently, with the climbing popularization of Deep Learning techniques, many
of the problems of semantic segmentation have been addressed through DL architectures.
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Figure 12 – Semantic segmentation applied to identify people in images. In this particular
example, SS can be used to identify humans in sign language videos, ignoring
visual information that is irrelevant to sign recognition tasks.

Source: Dato [2018]

In particular, Convolutional Neural Networks have been obtaining superior results in terms
of accuracy and efficiency to other methods traditionally applied [Girshick et al., 2013,
Long et al., 2015, Mazzini et al., 2018].

Regions with CNN, or simply R-CNN, proposed by Girshick et al. [2013] outper-
formed by 30% the previous best results on PASCAL Visual Object Classes (VOC2012)
challenge [Everingham et al., 2012], a benchmark for object segmentation containing over
27 thousand annotated objects in 11,530 images.

R-CNN is comprised of three main modules, as illustrated in Figure 13. The
first generates 2000 class-indifferent region proposals for all objects in the image through
selective search [Uijlings et al., 2013]. The second performs feature extraction using
Krizhevsky et al.’s (2012) pre-trained CNN, obtaining a 4096-dimensional feature vector
from each region proposal. Finally, a set of class-specific linear SVMs identify the object
enclosed within each proposed region.

A major drawback of R-CNN is the large amount of time spent to train the
network, since there are over 2000 regions per image. Also, selective search is a fixed
method where no learning stage is involved, potentially leading to the generation of bad
candidate regions. In this context, Girshick [2015] proposed Fast-CNN, integrating the
region proposal stage directly into the CNN pipeline. Fast R-CNN is faster than R-CNN
since the convolutional network itself generates a feature map directly from each image,
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Figure 13 – R-CNN system overview

Source: Girshick et al. [2013]

eliminating the costly convolutional step over 2000 image segments. Selective search is
performed over the feature maps to generate region proposals. Lastly, Fast R-CNN also
absorbed the classification stage by replacing the set of linear SVMs by a softmax layer,
which predicts each class from resized proposed regions.

Because Fast R-CNN uses selective search to identify region proposals, this stage
still affects the general performance of the network. Therefore, Ren et al. [2015] developed
the Faster R-CNN, which lets the network itself learn the region proposals. This new
version enables almost real time testing, as seen in Figure 14.

Figure 14 – Comparison among testing times (in hours) of R-CNN, Fast R-CNN and
Faster R-CNN

Source: Gandhi [2018]

The importance of this advancement connects back to SLR, insofar as the speed of sign
recognition can greatly impact the flow of communication in a natural setting. Therefore,
an ideal layer of segmentation to reduce visual complexity should not affect the performance
of the system as a whole.
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Lastly, He et al. [2017] proposed an approach called Mask R-CNN, which extends
Faster R-CNN by including a parallel branch for predicting objects’ masks. A diagram of
Mask R-CNN and Faster R-CNN architectures can be seen in Figure 15. An example of
semantic segmentation using Mask R-CNN can be seen in Annex A.

Figure 15 – Faster R-CNN (a) and Mask R-CNN (b) architectures.

Source: Lim [2017]

The next section presents another problem that can greatly benefit from the
advancements in semantic segmentation. In a like manner of the example shown in Figure
12, semantic segmentation can serve as a pre-processing step to pose estimation systems,
identifying humans on images and excluding other visual information.

3.2 Human Pose Estimation

The major goals of human pose estimation (HPE) are mapping human joints, such
as elbows and writs, and identifying the different parts of the body in images and videos.
From medicine [Obdržálek et al., 2012] to video-games, human pose estimation enables
a variety of applications. Despite having been an active research topic for many years
now [Hogg, 1983, Xiao et al., 2018], HPE still challenges the Computer Vision community.
Pfister [2015] lists the main difficulties:

(i) high variability in human body shapes

(ii) high variability of human appearance due to lighting, viewing angle, clothing and
background

(iii) high dimensionality of possible poses
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(iv) ambiguities due to the loss of depth information in 2D images

(v) motion blur

(vi) occlusions

Some examples of the challenges listed above can be seen in Figure 16.

Figure 16 – Examples of challenging setups for human pose estimation

Source: Pfister [2015]

Human pose estimation was initially addressed by directly modeling characteristics
of the human body. For instance, Hogg [1983] represented a person by hierarchical levels
(a person has an arm has a lower-arm, which in turn has a hand), while Forsyth and Fleck
[1997] established a “body plan” for people and for animals. The basic idea behind the
classical approaches is to describe the body as a deformable configuration, as Figure 17
shows. A person is represented by a collection of parts that can parameterized by pixel
location and orientation. This collection is then matched against pre-defined templates,
identifying possible valid configurations.
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Figure 17 – Classical representation of humans in pose estimation problems

Source: Babu [2019]

Although classical approaches have evolved to allow for complex configurations,
as in Yang and Ramanan [2012], model-based approaches are limited in expressiveness.
Evidently, only a finite number of different pose templates can be defined. After “DeepPose”,
proposed by Toshev and Szegedy [2014], HPE research began to steer towards Deep
Learning. Convolutional networks have replaced the labor-intensive stage of defining
templates, whilst yielding outstanding improvements on standard benchmarks. A study
by Wei et al. [2016], for instance, was able to estimate non-standard and ambiguous poses
with the use of Convolutional Pose Machines (CPMs), a series of CNNs that generate
2D mappings at each image location. The results of CPMs on three different benchmark
datasets can be seen in Figure 18.

Figure 18 – Non-standard and ambiguous poses estimated using CNNs

Source: Wei et al. [2016]
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Likewise, Gattupalli et al. [2016] introduced an interesting example of HPE using
Deep Learning. The study explores CNNs for pose estimation on an annotated sign language
dataset, so as to provide useful features for sign language recognition tasks. As discussed
previously, sign languages are composed of a multitude of manual - hand configuration and
orientation - and non-manual - such as facial expression and body posture - parameters.
In contrast with manual-focused approaches, few studies have been performed to utilize
the non-manual features of the language [Er-Rady et al., 2017]. Meanwhile, body posture,
which can be obtained through HPE techniques, can be beneficial to aid recognition in
signs that involve movement on a certain body location, as seen in Figure 19. Moreover,
HPE can also help distinguish between sign language dialogues and stories by observing
changes in body positions when the signaler addresses different interlocutors [Gattupalli
et al., 2016].

(a) Bruise (b) A bruise around one’s eye

Figure 19 – Example of a ASL signs that involve movement in specific body regions. 19a
shows the final configuration for the sign “bruise”, while 19b denotes “bruise”
around the eye region.

Source: Lapiak [2019]
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Chapter 4

Social Impacts of Deep Learning
Research

The epigraph of this thesis is a personal account found on Terrence J. Sejnowski’s
book The Deep Learning Revolution [Sejnowski, 2018]. Professor Sejnowski is one of the
pioneers of Neural Networks research [Ackley et al., 1985], along many other grand minds
such as Geoffrey Hinton and John Hopfield [Hopfield, 1982]. The whole passage reads:

As a graduate student in the Physics Department at Princeton, I ap-
proached the problem of understanding the brain by writing down equa-
tions for networks of nonlinearly interacting neurons and by analyzing
them, much as physicists have over the centuries used mathematics to un-
derstand the nature of gravity, light, electricity, magnetism, and nuclear
forces. Every night before bed, I would pray: “Dear Lord, let the equations
be linear, the noise be Gaussian, and the variables be separable.” These
are the conditions that lead to analytic solutions, but because neural
network equations turn out to be nonlinear, the noise associated with
them non-Gaussian, and the variables nonseparable, they do not have
explicit solutions. Moreover, simulating the equations on computers at
that time was impossibly slow for large networks; even more discouraging,
I had no idea whether I had the right equations. [Sejnowski, 2018]

This personal account introduces a few of the reasons why Neural Networks theory, despite
having its starts in the 1940s-1960s [McCullough and Pitts, 1943, Hebb, 1949, Rosenblatt,
1958], undergone multiple changes of fortune before achieving its current popularity.

The history behind Deep Learning is long and rich. In effect, capturing all the
nuances of its past is a herculean task. This chapter attempts to summarize the key
trends that led to recent developments in the area. The chapter ends with considerations
regarding some of the current social concerns around the development of AI systems.
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4.1 Historical Remarks

What is known today by “Deep Learning” has gone through several different
names: cybernetics in the 1940s–1960s, connectionism in the 1980s–1990s, and the current
resurgence under the name Deep Learning beginning in 2006 [Goodfellow et al., 2016]. Each
of these phases not only reflected different perspectives, but also marked the popularity of
the field in the succeeding years. Figure 20 summarizes the milestones of Deep Learning
development.

Figure 20 – Timeline of the development of Neural Networks

Source: Beam [2017]

Cybernetics: 1940s–1960s

The first wave of Neural Networks theory was tied to a transdisciplinary approach
known as Cybernetics [Wiener, 1948]. Cybernetics connected multiple areas from Control
Systems and Electrical Network Theory to Evolutionary Biology and Neuroscience.

McCulloch-Pitts neuron [McCullough and Pitts, 1943] marks the beginning of
Neural Networks research, an early mathematical model of how the brain functions.
McCulloch-Pitts model mimics the thought process through a “threshold logic”, which
could recognize two different categories by associating a set of weighted input values
w1x1, . . . , wnxn to an output y by testing if a function f(x,w) =

∑n
i=1wixi is positive

or negative. Hebb [1949] took the idea of threshold logic even further, contributing
towards quantifying brain processes. The Hebbian Synaptic Plasticity proposed that neural
pathways strengthen with successive usage, in particular between neurons that tend to
fire at the same time.

A great computational limitation of the McCulloch-Pitt’s model was that the



Chapter 4. Social Impacts of Deep Learning Research 36

weights wi had to be set by the human operator for each different task. Rosenblatt’s (1958)
Perceptron circumvented this problem, becoming the first model that could learn a set
of weights by analyzing input observations from each category. Shortly after, Widrow
and Hoff’s (1960) Adaptive Linear Neuron (ADALINE) could also learn to predict real
numbers from data.

Another important biological contribution of this period is Hubel and Wiesel’s
(1962) report on properties of single neurons, recorded with a micro-electrode. Although
the impacts of this research for Neural Networks models were not immediately apparent,
it inspired the creation of Deep Learning architectures, which are organized in a similar
fashion as the hierarchy of areas in the visual cortex studied by Hubel and Wiesel.

Using models with polynomial activation functions and statistical analysis, Alexey
Ivakhnenko and Valentin Lapa displayed embryonic efforts towards developing algorithms
similar to today’s Deep Learning approaches [Ivakhnenko and Lapa, 1967, Ivakhnenko,
1971]. Through a laborious, manual process, the best features were statistically chosen
and forwarded on to the next layer of computations.

In 1969, after Minsky and Papert’s (1969) book “Perceptron”, Neural Networks
research entered its first winter. Critics of Rosenblatt’s Perceptron pointed the limitations
of working with a linear model, most famously, by describing its inability to represent a
XOR function. The book provoked great backlash against biologically inspired models,
causing Neural Networks research to remain nearly dormant for a decade.

Connectionism: 1980s–1990s

Parallel Models of Associative Memory, a workshop organized by Geoffrey Hinton
and James Anderson in 1979, brought together many Neural Networks pioneers [Sejnowski,
2018]. This second wave of Neural Networks researchers were influenced by Cognitive
Science, an interdisciplinary approach to understanding thought, learning, and mental
organization [Goodfellow et al., 2016]. While cognitive scientists in early 1980s studied
symbolic models of reasoning, that were difficult to understand in terms of how they occur
in the brain through neurons, connectionists models’ were grounded by the actual biology
of the brain [Touretzky and Hinton, 1985], even reviving some of Donald Hebb’s ideas
[Hebb, 1949].

In connectionism, the central idea is that a large number of simple computing units
configured as a network can achieve intelligent behavior. This insight is just as applicable
to neurons in biological nervous systems as to hidden units computational models. For
instance, according to Hinton et al.’s (1986) concept of distributed representation, a
system’s input should be represented by multiple features. Such features, in turn, should
be capable to represent as many inputs as possible. The excerpt bellow, from Goodfellow
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et al. [2016] explains distributed representation with a simple example:

For example, suppose we have a vision system that can recognize cars,
trucks, and birds, and these objects can each be red, green, or blue. One
way of representing these inputs would be to have a separate neuron or
hidden unit that activates for each of the nine possible combinations:
red truck, red car, red bird, green truck, and so on. This requires nine
different neurons, and each neuron must independently learn the concept
of color and object identity. One way to improve on this situation is to
use a distributed representation, with three neurons describing the color
and three neurons describing the object identity. This requires only six
neurons total instead of nine, and the neuron describing redness is able
to learn about redness from images of cars, trucks and birds, not just
from images of one specific category of objects. [Goodfellow et al., 2016]

During the connectionist movement of the 1980s, several main ideas emerged,
some of which stayed essential to today’s Deep Learning theory. The first successful use
of back-propagation to train deep neural networks, which is still a popular approach to
training Deep Learning models, was reported in Rumelhart et al.’s (1985) work. Other
equally important contributions, such as LeCun et al.’s (1995) Convolutional Networks
for vision and speech recogntion, and Hochreiter and Schmidhuber’s (1997) Long Short-
Term Memory Network (LSTM) used for sequence modeling tasks, also arose during the
connectionist wave.

By mid-1990s, neural network-based and other AI-based projects have begun to
promise ambitious claims while looking for investments. Investors unhappy when AI’s
study failed to meet these unrealistic expectations. Neural Networks were too costly to
train on real world applications and there were few representative datasets at the time.
Simultaneously, other Machine Learning areas started to show progress, achieving good
results on many important tasks [Cortes and Vapnik, 1995]. These two factors led to a
decline in the popularity of neural networks that lasted until 2007 [Goodfellow et al., 2016].

Deep Learning: 2006–

The most recent, and current, wave of Neural Networks research as re-branded as
Deep Learning. In 2006, Geoffrey Hinton introduced the ideas of unsupervised pretraining
and Deep Belief Networks (DBN) [Hinton and Salakhutdinov, 2006]. A DBN, contrary to
the past approaches, could be efficiently trained using a strategy called greedy layer-wise
pre-training. In short, the idea was to train a simple 2-layer unsupervised model, such
as a Restricted Boltzmann Machine [Ackley et al., 1985], followed by freezing all of its
parameters. Then, a new set of layers is stacked atop, and repeating the same procedure.
A deep network is formed by stacking and training layers in a greedy fashion, which can
then be used to initialize the parameters of a traditional neural network [Goodfellow et al.,
2016].
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The term “Deep Learning” was coined as more networks started gaining depth
through the greedy layer-wise strategy [Bengio et al., 2007, Marc’Aurelio Ranzato et al.,
2007]. By 2011, the speed of GPUs had increased significantly, making it possible to train
deep Convolutional Neural Networks such as AlexNet, which achieved astounding results
on the ImageNet Large Scale Visual Recognition Competition (ILSVRC) [Krizhevsky
et al., 2012].

Deep Learning has since become more popular and useful, largely as a result of
more powerful computers, greater amounts of datasets available and advancements in
techniques to train deeper networks [Alom et al., 2018]. Figure 21a provides a perspective
on the availability data over the years, while Figure 21b reflects how the computing
capacity of Neural Networks has grown since its creation. The years to come have many
challenges and opportunities to enhance Deep Learning and to take it across new frontiers.

(a) (b)

Figure 21 – Growth of datasets (21a) and of neural network size over time (21b).

Source: Goodfellow et al. [2016]

4.2 Deep Learning in Society

Artificial Intelligence based solutions have the potential to bring huge benefits to
society. Deep Learning, in specific, is re-configuring access to information [Wang et al.,
2018a], driving [Chen et al., 2015] and even medical diagnosis [Suk et al., 2014]. Contrary
to the dystopian, AI-dominated future commonly portrayed in the media [Geraci, 2012],
the immediate concerns caused by this fast diffusion of Deep Learning in the daily lives of
millions of people revolve around fairness, privacy and transparency. In a SLR system, these
factors are of primary importance. For instance, sign languages are not ethnically exclusive,
hence, a SLR system should be fair in the sense that it is indifferent to skin tone. Moreover,
sign translation frameworks should be immune to external interference, conveying, as
precisely as possible, the meanings that the signaler intended to transmit. Finally, SLR
systems should be transparent, establishing a layer of human-machine confidence, and
thus, permitting communication to flow as naturally as possible. This section explores
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each of these concerns, aiming to understand how AI solutions can be designed to with
“society-in-the-loop”.

4.2.1 Fairness

Machine learning systems are increasingly influencing each facet of human life,
including the quality of health care and education that someone receives [Caruana et al.,
2015, Bosch et al., 2016], the news or social media, who is given a job, who is released from
prison and who undergoes increased policing [Chouldechova and Roth, 2018]. This growth
has brought attention to ML’s potential to increase social inequities in many research
communities, as well as in the popular press Holstein et al.’s (2018).

Learning is not merely a memory transfer method. It includes generalizing from
examples rather than just memorizing the particular details that occur in the observations.
This is the induction method: general rules from particular examples are drawn — rules
that take into account past instances efficiently but also apply to future, unknown instances.
It is hoped that future instances can be comparable to previous instances, although not
precisely the same [Barocas et al., 2018].

This involves providing representative examples for reliably generalizing models for
ML from previous observations. It can be achieved, for instance, by providing a sufficient
amount of observations to capture subtle patterns; a sufficiently varied dataset, to show
the various kinds of appearances that objects might have; and a sufficiently annotated set
of examples to provide reliable ground-truth [Barocas et al., 2018]. A learned model is
only as reliable as the data on which it was trained, thus, high quality data is critically
important to ML. Consequently, when designing socially sensitive applications - such as a
sign language translation system - constructing a representative dataset demands close
attention.

Cases of ML-based applications reproducing systemic unfair behavior - for example,
hiring systems which are more likely to recommend candidates from specific gender or
race; or a criminal recidivism predictor that correlates race with higher probabilities
of relapse [Chouldechova, 2017] - are not direct indications that the system’s designer
meant to reproduce social inequalities. It is important to understand when such disparities
are, in fact, discrimination. Analyses on whether the observed disparities are justified or
detrimental must be performed [Binns, 2017]. These issues seldom have easy answers, but
the comprehensive literature on philosophical and sociological discrimination can assist in
the reasoning process.

Many different statistical metrics exist to quantify a ML model, such as precision,
recall and f-score. None of them require previous knowledge of sociological theory, and are
relatively straightforward to measure. On the other hand, attention to fairness criteria in
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AI is fairly recent [Chouldechova and Roth, 2018], and mathematical modeling of such
metrics still incites heated debates within the research community [Corbett-Davies and
Goel, 2018]. While it is difficult to foresee the effect of implementing a fairness criterion
as a concrete restriction in ML models, the growing attention to demographic criteria in
Statistics and Machine Learning reflects a change in how intelligent systems are being
conceptualized and the perception of the responsibilities of those building them.

4.2.2 Privacy and Security

Most of recent advances in Deep Learning were enabled by the collection of large
and representative datasets. Massive data collection, however, presents obvious privacy
issues. Ownership of highly sensitive data, such as users’ photos and recordings, is taken
by companies that collect it. Furthermore, users can neither delete the data generated by
them nor restrict the purpose for which such data is used [Shokri and Shmatikov, 2015].

Artificially intelligent systems built on top of these massive datasets have become
one of the inseparable technologies in today’s world. Highly sensitive services, such as
autonomous driving and medical diagnosis are benefiting from advancements in DL research.
Thus, understanding the problems of security and privacy that revolve around AI systems
can no longer be overlooked. To address this issue, a study by Bae et al. [2018] surveys
the current methods proposed to enable robust AI systems. The authors define the notion
of SPAI: Secure and Private AI.

Secure AI focuses on attacks and defense on AI systems. In terms of Deep Learning,
a system constitutes a model that is learned from the data available. Bae et al. [2018]
addresses two major types of security attacks: evasion and poisoning attacks. A poisoning
attack takes part in the training stage and attempts to subvert the model during learning.
On the other hand, if adversarial observations are used in the inference stage to deliberately
lead the model to misclassify the input, this attack is called an evasion attack.

The second notion explored, Private AI, aims for AI systems that preserve data
privacy. Because of computing costs or the need for collaborative training, Deep Learning
systems may require transferring users’ sensitive information to distant computers. In such
situations, after the transfer, users lose control over the data and have concerns about their
data privacy being stolen between transfers, or that their data may be misused without
consent.

Although defense methods [Buckman et al., 2018, Gu et al., 2018, Sun et al.,
2018] and privacy-preserving techniques [Shokri and Shmatikov, 2015, Abadi et al., 2016]
have been recently proposed, works in the area are still in relatively early stages. To
guarantee robust, deployable SPAI systems, it is interesting that more studies are performed
around the different types of attacks AI systems are subject to. Research on defense and
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privacy mechanisms are equally important, taking into account practical considerations on
processing time and throughput.

4.2.3 Interpretability

As Deep Learning models become widespread key fields, for instance, in medicine,
criminal justice, and financial markets, it seems problematic for people to be unable to
understand these models [Caruana et al., 2015]. Although black-box DL systems in place
nowadays provide the end user with strong predictive power, they are generally abstruse,
in a way that creates room for distrust [Lipton, 2016].

Enabling human-machine confidence should become a necessary objective, espe-
cially in sensitive applications, such as automated medical diagnosis [Bhatt et al., 2019].
In other words, system design should take into account training interpretable models
or coupling black-box with explainable models, demystify the reasoning process while
preserving respectable precision rates [Bhatt et al., 2019]. To this end, Lipton [2016] defines
the two key concepts that enable the identification of interpretability problems and system
properties that either enhance or compromise human interpretation of Machine Learning
models.

The first is interpretability through transparency. Transparency connotes some level
of understanding the mechanism by which the model operates. Three levels of transparency
are considered: at the entire model, or simulatability; at individual components, e.g.
parameters, or decomposability; and at the level of the training algorithm, or algorithmic
transparency.

Model interpretability can also be achieved post-hoc, that is, extracting information
from learned models. Common ways of enabling post-hoc interpretations is through coupling
a black-box model with visualizations of learned representations and natural language
exaplanations. While this approach may not precisely elucidate the way how a model works,
it nonetheless may confer important information to the end user. Post-hoc interpretability
is akin to the level that humans can be considered interpretable, since the processes by
which decision making happens and the reasoning behind such processes may be distinct.
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Chapter 5

Future Work

To achieve the objects established for this Senior Thesis Project, the following
activities were proposed:

1. Literature review:

a) study of the techniques applied to semantic segmentation and pose estimation
problems;

b) study of the Deep Learning architectures applied to feature extraction in images
and videos;

c) study of the evolution of Deep Learning, assessing the social impacts achieved
by advancements in the field.

2. Empirical analysis:

a) implementation of mainstream and state-of-the art solutions to semantic seg-
mentation and pose estimation problems;

b) design of experiments to compare and validate the techniques implemented on
sign language videos;

c) result analysis and discussion.

3. Continuous documentation of the project in the form of Thesis I and Thesis II;

4. Presentation of results to the examining board.

The first topic was covered by this thesis, a detailed schedule of the remaining activities
can be found on Appendix A.
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Chapter 6

Final Remarks

Deep Learning theory has evolved significantly since it was first proposed in
the 1940s, under the title of Cybernetics. Cutting-edge learning techniques, coupled with
unprecedented processing power, and massive amounts of data enable the design of solutions
to problems once thought too complex solve. Artificial Intelligence is revolutionizing the
way people live, interact and work.

In this context, this thesis aimed to understand how Deep Learning can be used
to bridge the communication gap between the deaf and the hearing communities. The first
step towards designing a robust sign language recognition system using Deep Learning
is understanding the theory behind DL itself. This was achieved in three stages. First,
the fundamentals of DL theory were laid out. Then, two specific applications of DL
architectures that are important to sign language recognition were presented. Finally, DL
was discussed under historical and social perspectives. Study in all three areas are key
components to the progression of this work, to be finalized in the second half of Senior
Thesis Project.
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Annex A

Deep Learning in Action: Mask R-CNN

As discussed in Chapter 3, Mask R-CNN is able to both perform semantic
segmentation and generate pixel-wise masks of each object recognized. Figure 22 shows a
few examples of Mask R-CNN’s results obtained using a model pre-trained on the COCO
dataset [Lin et al., 2014, Rosebrock, 2019].

Figure 22 – Examples of semantic segmentation using Mask R-CNN

(a) Ada Lovelace1 (b) Oliver

(c) Baymax (d) Yoshi

1Source: Carpenter [1836]
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One important observation regarding the application of Mask R-CNN to aid in sign
language recognition systems is that, because masks are generally not precise, important
areas of the image could be left out. This particular effect can be seen in Figure 22a: the
mask covers most of the significant areas for sign recognition, nonetheless, part of the right
hand was not captured. In the context of SLR, the absence of information concerning the
fingers could reflect in the misclassification of a sign. Therefore, a possible solution to this
problem could be to segment the image with respect to the smallest bounding box that
encloses an object, in place of its bit-wise mask.
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Appendix A

Thesis II: Activities

A tentative schedule for the activities to be executed in the second half of the
Senior Thesis Project can be seen in Table 1 below.
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Table 1 – Activities for the second half of the Senior Thesis Project

Aug Sep Oct Nov Dec
W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2

Literature Review
80% completeSS, HPE and SLR datasets

40% completeCNN architectures
Milestone 1: Literature Review chapter

Experiments
20% completeImplementation of SS methods

Milestone 2: Intermediate results report

0% completeImplementation of HPE methods

0% completeExperiment design
Milestone 3: Methodology chapter

Analyses
0% completeApplication of SS/HPE on SLR datasets

0% completeAnalyses of results
Milestone 4: Thesis draft

0% completeMaterials for final presentation
Milestone 5: Thesis presentation

0% complete

Final text revisions
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